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1. Introduction

Let R be a unitary (associative) ring and C a nonempty subset of R. The centralizer
of C'in R is a subring of R defined by

S(C,R):={reR|cr=rc for allce C}.

The center of Ris S(R, R), denoted by Z(R). If C' = {c} is a singleton set, then S(c, R) :=
S({c}, R) is called a principal centralizer ring. Clearly, S(C,R) = () S(¢,R) for any
ceC

nonempty subset C' of R. This means that, to understand the entire ring S(C, R), it may
be useful to study first the individual ring S(c, R) for each ¢ € C.

The centralizer rings S(C, R) have been related to invariant rings. Let G be a subgroup
of the group Aut(R) of automorphisms of the ring R. For any g € Aut(R), the action
of g on R is denoted by r — 79 for r € R. An element g € Aut(R) is said to be inner
if there exists a unit s, € R such that 79 = s;lrsg for all € R. The fixed ring (or
invariant ring) of R under G is R® := {r € R | r9 =r for all g € G}. If all elements of G
are inner and C = {s, € R | g € G}, then S(C, R) = RY. The study of fixed rings has a
long history (see [17]). They are investigated by many authors, we refer to [14] and the
references therein for more information on fixed rings with G finite groups.

For a positive integer n, M,(R) denotes the full matrix ring of all n x n matrices
over R, and GL,(R) the general linear group of all invertible n X n matrices over R.
For a nonempty subset C' of M,(R), the ring S,(C,R) := S(C, M,(R)) is called a
centralizer matriz ring over R of degree n. For a matrix ¢ € M, (R), the ring S, (¢, R) :=
S(c, M, (R)) is called a principal centralizer matriz ring over R of degree n, and the
extension Sy,(c,R) C M,(R) is called a principal centralizer matriz extension. They
are the objectives of this note. Typical examples of principal centralizer matrix rings
and extensions include centrosymmetric matrix algebras (see [16,20]) and the Auslander
algebras of the truncated polynomial algebras k[x]/(z") (see Example 4.9).

Let G be a subset of GL,(R) acting on M, (R) by conjugation. A number 1 <i <n
is called a G-free point if g;; = 0 for all g = (g;;) € G\ {I,}, where I, is the identity of
M, (R). If G = {¢) is a cyclic group generated by ¢ € GL,(R), then a G-free point will
simply be called a c-free point.

Recall that a matrix in M, (R) is a Jordan block if it is of the form

rl - 000
0 r . 0 0
00 - r 1
00 -~ 0 r
nxn

where 7 € R is called the eigenvalue of the matrix. A matrix a = (a;;) € M,(R)
is called a Jordan-block matrixz if it is a diagonal-block matrix with each block in
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the main diagonal being a Jordan block. In this case, we may suppose that a has ¢
distinct eigenvalues in R, say rq,---,r;, and that, for each eigenvalue r;, there are
s; Jordan-blocks J;; of distinct sizes A;; with the eigenvalue r;, 1 < j < s;, such
that J;; appears b;; time and Aj; > Ajg > -+ > A, for 1 < ¢ < ¢ The set
{()\11, )\12, T, )\151), ()\21, /\22, e ,)\232>, T, (/\th )\tQ, R ,)\tst)} is called the block type
of a. A matrix ¢ € M, (R) is called a Jordan-similar matriz if it is similar to a Jordan-
block matrix a by a matrix in GL,(R), that is, there is a matrix u € GL, (R) such that
a = ucu~! is a Jordan-block matrix in M, (R). In this case, the block type of c is defined
to be the block type of a. If R is an algebraically closed field, then every square matrix
over R is Jordan-similar (for example, see [4, VILT]).

In this note, we investigate cellular structures in the sense of Graham and Lehrer (see
[6]), and Frobenius extension properties in the sense of Kasch (see [11]), of centralizer
matrix rings. This is approached by combining methods in matrix theory with the ones
in combinatorics and representation theory of algebras. The idea to combine them in
proofs seems to be new.

Our first main result points out a cellular structure of principal centralizer matrix
algebras.

Theorem 1.1. Let R be an integral domain and c¢ a Jordan-similar matriz in M, (R).
Then

(1) Sp(c, R) is a cellular R-algebra.

(2) Suppose that R is a field and ¢ is of the block type {(A11, A2, , A1sy )y 5 (Ai1,
At2, y Ats,) t- Then Sp(e, R) is a quasi-hereditary algebra if and only if \ix = s; for
1<i<t.

Next, we establish Frobenius extensions of centralizer matrix algebras included in full
matrix algebras.

Theorem 1.2. Let R be a unitary ring.

(1) If G is a finite subgroup of G L, (R) with a G-free point, then S, (G, R) C M, (R) is
a G-Galois extension. Moreover, if |G| is additionally invertible in R, then the extension
is also split.

(2) Suppose that R has no zero-divisors and ¢ € My (R) is a Jordan-similar matric
with all eigenvalues in Z(R). Then S, (c, R) C M, (R) is a separable Frobenius extension.
Moreover, the extension Sy (c, R) C M, (R) is split if and only if c is similar to a matric
of the form diag(riln,,roln,, - ,redp,) with Y ,ny = n, vy € Z(R) and r; # r; for
1<i#j<t

Thus, if R is an algebraically closed field, then every principal centralizer matrix
extension over R is a separable Frobenius extension, and every principal centralizer
matrix R-algebra is cellular. Moreover, the number of non-isomorphic simple modules
of such a cellular algebra can be described combinatorially by the data of Jordan forms
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(see Corollary 4.8). Tt is surprising that, in general, if C' has more than one element or G
does not have any free point, then Theorem 1.2 is no longer true. This is demonstrated
by examples in Section 3.

Consequently, we have the corollary.

Corollary 1.3. Let G be a finite group, k an algebraically closed field such that its char-
acteristic does not divide the order of G, and c an element in the group algebra kG of G
over k. Then S(c,kG) is a cellular algebra and S(c,kG) C kG is a separable Frobenius
extension.

Theorem 1.2(1) generalizes [20, Theorem 3.1(3)] substantially, while Corollary 1.3 ex-
tends [20, Theorem 3.3] in case of R being an algebraically closed field. As principal
centralizer matrix algebras are much more general and complicated than centrosym-
metric matrix algebras, our approach in this note is different from the one in [20]. For
example, the involution used for the cellular structure of principal centralizer matrix
algebras is completely different from the matrix transpose used in [20].

The paper is organized as follows: In Section 2, we fix notation and develop basic facts
on centralizer matrix algebras. In Section 3, we first recall the definitions of and some
known results on Frobenius and G-Galois extensions, and then prove Theorem 1.2. In
Section 4, we show Theorem 1.1 and Corollary 1.3 after recalling the notion of cellular
algebras. This section ends with a few open questions.

2. Principal centralizer matrix algebras

In this section we discuss basic properties of centralizer matrix algebras.

Let m,n be positive integers. We write [n] for the set {1,2,...,n}.

Let R be a unitary ring (that is, an associative ring with identity), we denote by
rad(R) the Jacobson radical of R, by M,,x,»(R) the set of all m x n matrices over R and
by e;; the matrix units of M, (R), with i € [m], j € [n]. We write M, (R) for My, x,(R)
and I, for the identity matrix in M, (R). For a matrix a € M,,,«»(R), we denote by a’
the transpose of a.

By an R-module we mean a left R-module. For an R-module M, Endgr(M) stands
for the endomorphism ring of M. If f : X — Y and g : Y — Z are homomorphisms of
modules, the composite of f and g will be denoted by fg. This means that the image of
x € X under f is written as (z)f, instead of f(z).

Lemma 2.1. Let C be a subset of M, (R).

(1) If x is invertible in M, (R), then there are isomorphisms of rings: S, (zCx~ ', R) ~
Sn(C,R) and S,(Cz,R) ~ S, (zC, R), where zCx~1 := {zcz™! | c € C}, 2C = {ac |
ceC} and Cx := {cx | c € C}.

(2) If each ¢ € C is invertible in M, (R) and C~1 :={c™! | c € C}, then S,,(C,R) ~
S.(C71 R).
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(3) If C = {c* € M,(R) | i € N}, then S, (C,R) = S,(c, R).

Proof. (2) and (3) are trivial. For (1), the correspondence 7 + z~lrx gives rise to an
isomorphism of rings not only from S, (zCz~!, R) to S, (C, R), but also from S,,(zC, R)

to S,(Cz,R). O

Recall that an n x n matrix a is called semicirculant if it has the form

a; a2 az ... (079

0 a1 ay ... Gp_1

0 0 ay ... Ap—2 c Mn(R)

o o0 0 ... al
In this case, we write a = [a1,ag,...,a,]. If J, 0 =1[0,1,0,...,0] stands for the Jordan
block of size n with the eigenvalue 0, then the semicirculant matrix a = [a1, a9, ..., ay]

can be represented as a polynomial in J,, o:
n P
0 n—1
a=ardyo+azdno+ - Fand, = E An—p+1 E €p—j+1,n—j+1
p=1 j=1

n p
= E E  Gn—p+1€p—j+1n—j+1,
p=1j=1

where J,?’O is understood as the n x n identity matrix I,,.
For 1 < p < min{m,n}, we define

P
G” = epjitn—jt1 € Myxn(R).
j=1
If m = n, then a1, ,a,] = > 1| an—i+1G"

Lemma 2.2. Let I = [r,1,0,...,0] € M,,(R) and J = [r',1,0,...,0] € M,(R) be Jordan
blocks with r,v" € Z(R). Define A := {a € M,,xn(R) | Ia = aJ}.

(1) If r # " and R has no zero-divisors, then A = 0.

(2) If r =1/, then A is a free R-module with an R-basis {G? | 1 < p < min{m,n}}.

Proof. Let a = (a;j) € My xn(R) and ajo = amy1,; =0 for 1 <i<m, 1 <j <n. Then
Ia = (ra;j + @it1,5)mxn. Similarly, aJ = (@i j—1 + aij7")mxn. Due to r,r’ € Z(R), we
know that Ia = aJ if and only if

(*) (r — r’)aij = Qi 5—1 — Q41,5 for all 1 < ) < m, 1 < _j <n.

Thus a = (a;;) € Mpyxn(R) lies in A if and only if () holds.
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(1) Assume r # 7’. Then (r —r")am1 = amo —am+1,1 = 0. Since R has no zero-divisors,

we have a1 = 0. It follows from (r — r")a;1 = aj0 — @i+1,1 = —ai+1,1 that a;;1 = 0 for
1 <4 < m. Similarly, (r — r")a;e = ai — ait1,2 = —ai41.2 for 1 < i < m. This implies
m2 = Gm—1,2 = -+~ = a12 = 0. Continuing this argument, we get a;; = 0 for 1 <7 < m,

3<j<n.Hencea=0and A= {0y}

(2) Assume r = 7. Then a = (a;;) € Mpxn(R) lies in A if and only if a; ;-1 =
ajp1, for 1 <1 <m,1 <j<n. Thus a;j =a;—1j-1=-=a;—j0=0for1 <i¢—-75<
m—1and a;; = Giy1j+1 = = Cmt1,j4+mt1—i = 0form—n+1 <i—j <m—1. That
is, aj; = 0 for min{l,m —n+1} <i—j<m-—1

Let [ := min{m,n}. For 1 —n < ¢ —j < min{0,m — n}, it follows from (%)
that a;; = a;—1j-1 = -+ = a1j—i+1- Let p := i —j+nand v == n—j + 1.
Then 1 < p<l,i=p—u+1l,j=n—u+1and 1 < u < n. It follows from
0<p—u=1i—1<m—1that a1 p—pr1 = Gp—utin—ut1 for 1 <u < p < [. Thus
a= 2221 Alnptl D Cputln—utl = 22:1 a1 n—p+1GP. Hence a € A can be writ-
ten as an R-linear combination of {GP | 1 <p <I}.

We show G? € A for 1 < p <[, that is, (GP); j—1 = (GP)i41,; for 1 < i < m and
1 < j < n. In fact,

D D
6i+1,i+1Gp€jj = €i41,i+1 g Ep—v+1l,n—v+1€55 = E 5i+1,pfv+15n7v+1,jei+1,ja
v=1 v=1
D D
eiiGpejfl,jfl = €44 g Ep—utln—ut+l1€j—1,—1 = E §i,p7u+15n7u+1,jflei7j71
u=1 u=1
p p—1
= E 6i+1,p7u+25n7u+2,jei,jfl: E 6i+1,p7v+15n7v+1,jei,jfl
u=1 v=0

p
= E 5i+1,p7v+16n7v+1,jei,jfl~
v=1

Thus (GP)ij—1 = >0 _; 6it1,p—v+10n—v+1,; = (GP)it1,j. This implies that G € A and
{G? |1 <p <} is an R-generating set of A.

Moreover, {G? | 1 < p <1} is an R-linear independent set. Indeed, (p—u+1,n—u+
=@ —v+1,n—u +1)if and only if (p,u) = (p/,v'). Since 1 <p—u+1<1<m
and 1 < n —wu+1 < n, there holds the inclusion {ep—y+1n—ut1 |1 <p <11 <u <
P} C{epu |1 <p<m,1 <u<n}. As the matrix units {ep, |1 <p <m,1 <u<n}is
an R-basis of M,,x,(R), we know that if 22:1 a,GP = Z;zl S apep—uttn—ut1 =0
for a, € R, then a, =0 for 1 < p <, and therefore {G? | 1 < p <} is a set of R-linear
independent elements. Hence {GP | 1 < p <} is an R-basis of A. O

In Lemma 2.2(2), the basis elements G” do not involve the value r. Hence A is in-
dependent of the choice of r. In fact, if we write I = rl,, + Jpn 0 and J = 71, + Jy 0,
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then I'a = aJ for all a € My,x,(R) is equivalent to saying that J,, oa = aJ, o for all
a € My,xn(R). Thus A is independent of the choice of r.

A special case of Lemma 2.2 is ¢ := 1 = J = [r,1,0,...,0] € M,(R) for some
r € Z(R). Then S,(c,R) is the set of all semicirculant matrices in M, (R). Clearly,
Sn(c, R) ~ R[z]/(z™) as rings. Moreover, if R is a local ring, that is, the set of all
non-units in R is an ideal of R, then S, (¢, R) is a local ring.

Example 2.3. Let ¢; = [1,1,0] € M3(R), c2 = [1,1] € M2(R) and ¢ = diag(cy,c2) €
M5(R). Then Ss(c, R) is a free R-module of rank 9 by Lemma 2.2(2). If R is a field, then
Ss(c, R) is isomorphic to an algebra given by the quiver with relations:

le _—— 2, Bafa = 0.
B

Here the vertices 1 and 2 correspond to the primitive idempotents fi = e11 + €22 + €33
and fo = eqq + €55 in S5(c, R), respectively, and the compose af of two arrows a and

[ means that « comes first and then 8 follows, that is, o is a path of length 2 from

the vertex 1 to itself. Thus S5(c, R) is a cellular algebra with Cartan matrix <g 3

(see [19, Theorem 6.1]). Due to Sz(c1, R) ~ R[X]/(X?) and Sa(c2, R) ~ R[X]/(X?), we
know Ss(c¢, R) # Ss(c1, R) x Sa(ce, R). This example shows that the study of S, (¢, R)
related to ¢ cannot be reduced to the one related to each of Jordan blocks ¢;. Gen-
erally, the centralizer of ¢ in M,,1+,(R) does not coincide with the centralizer of ¢ in
diag(M,,(R), M,,(R)). Also, observe that Ms(R) is not a free S5(c, R)-module.

Now, we assume that c is a Jordan-block matrix with the same eigenvalues in Z(R).
More precisely, suppose that ¢ has b; Jordan-blocks J; of size A\; for 1 < ¢ < s with
AL > Ao > - > Ay, that is,

(1) c=diag(J>, g2, ..., Jb%) € M, (R)

with J; = [r,1,0,---,0] € My, (R) appearing b; times for 1 < j < s and r € Z(R).
We define

i i—1
mo := 0, m; ::pr, Nij ::pr)\p—I—j)\i, 1<i<s5,1<5<b;.
p=1 p=1

Then mg < my < --- < mg and my is the number of Jordan blocks of ¢ and ng, = n is
the size of the matrix c. For each i € [m;], let g(i) be the smallest g(¢) € [s] such that
i < mygy, and let h(i) :=1i —mguy—1 € [byey] and 655 := min{Ay;), A\g(;)} for j € [my].
Note that [n] = {ng)ni) — Ag) Tw €N |1 <5 <mg, 1 <w < Ay}
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For each i € [m;], we define

Mg (i)h(i)

fi= Z Epp>

P=Tg(iyn(i) ~Ag(i) 1

that is, f; is the identity matrix corresponding to the i-th block in the identity matrix
I,,. Here I, is regarded as a diagonal mg X m, block matrix. Then 1 = Z:.’fl i is
a decomposition of 1 into pairwise orthogonal idempotents of S, (¢, R). Consequently,

Sn(c, R) has the matrix decomposition

hSu(e. RV fiSu(e, R)fs - fiSu(e,R) fm,
(e, R) = fQSn(?v R)fi fzSn(?, R) fo fzSn(C? R)fm.
FnoSules RV S Sules B2 o fonSu(es RV )

It is easy to see that an ms x m; block matrix a = (A;;) with A;; € My, xx,,;, (R) lies
in Sy (c, R) if and only if each block A;; satisfies Jg(;yAij = AijJg( for 1 < 4,5 < my.
More precisely, a € S, (¢, R) is written as a block-matrix form

A11 A12 e Alms

A21 AQQ e A2m5
a=(Ay)= : : - :

Amsl AmSQ e Amsms

MeXMmg

where the diagonal entry A;; is a Ag) X Ag(;) semicirculant matrix and the off-diagonal
entry A;j is a Agj) X Ag(;j) matrix over R, having the block form:

[a17a27"' 7a/\g(]~)]) .
if Mgty > Ag(5)s
Aij = ( RS W Wl . 9(®) 5(4)
(OAgm»Ag(j)*Agm [ar, a2, ax,,)]) if Ag(i) < Ag(s)

with all a, € R. Visually,

A — 00, 2y ‘ [a1,a2,--- , ag,,]
1] .
A

g(i)—aiw)\g(j)—ew‘ Oxgiy =035, 025
For simplicity, we set A := S,(c,R), Aij = fiSu(c,R)f; and Aij = {a €
M,\g(i)x,\g(j)(R) | Jgiya = adyy}. Given 1 <, 5 <mg and 1 < p < 0,5, define
P
ij = Z ep—ut1 g —ut1 € Mg, (R).

u=1

By Lemma 2.2(2), {G7; | 1 <p < 0;;} is an R-basis of Aij, which has the property.
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Lemma 2.4. (1) If 1 < 4,5,k <mg, 1 <p <O, 1 < g < Oy, then

0 fp+q— g <1,
Gkaz] = GP‘FQ*)\Q(;C) . g( )
i prJrqf)\g(k) > 1.

(2) For 1 < i,j,k < mg,1 <m < 0,1 <1 <0, zp,ys € R for 1 < p < m and
1<qg<l, let

m l
X = me*PJFlG?k € N;x and ij = Zyl*qulej S Akj-

p=1 q=1

Then

0 ifm+1— )‘g(k) <1,

XikYrj = mAl—Ag () A=Ay (g —u+1

A Zl xvym+l7)\g(k)7u+1fv+1G?j ifm +l — )\g(k) 2 ]_.
u= v=

Proof. (1) By definition,

q

Ep—ut1,0g () —u+1) E €q—v+1,7, () —v+1)
1 v=1

M@

GGy = (

I
M~ 5

Z 6>‘g<k) —u+1,q—v+1€p—u+1,Ag;)—v+1

v=1

IS
Il
—

ep-l—(]—)\g(k) —v+1,A4)—v+1y

[
<

S

where V:= {v € [q] | 1 < A\yx) — g+ v < p}. If V =0, then G}, G}, = 0. Now we take
into account the case V' # 0. Let vg € V, that is, 1 <vg < gand 1 < Ag(k) —q+vo < p.
It follows from ¢ < 0; = min{/\g(k),)\g(j)} < /\g(k) that 1 < vg < p+qg— /\g(k) and
V={v|1<v<p+q—Ayr} Conversely, if 1 < p+q—Ag), then 1 € V. Thus V # 0
if and only if p + ¢ — Ay(x) = 1. Therefore, for V' # 0,

PHa—Ag(k)
P G _ § : _ ~PTa= (k)
Gikaj - Ep+q—Agi)—v+1,Ag)—v+1 = Gij
v=1

This completes the proof of (1).
(2) By definition,

m l m 1
XirYej = (Z xmprGfk)(Z yl*q+1GZj) = Z mefﬁlyl*qulekGZj'
p=1 qg=1

p=1g=1
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By (1), G},GJ; =0 for p+q— Ay < 1. Let D:={(p,q) |[1<p<m1<g<l1<
p+q— Ay} Then GkaZj =0 for (p,q) ¢ D, and therefore

m 1

(%) szm p+1Yl— q+1szGk] Z Lm—p+1Y1—- Q+1szGk]

p=1g=1 (p,9)€D

If D = (), then the summation (*) equals 0, and therefore X;;Yy; = 0. If D # (), then
we pick up an arbitrary element (pg,qo) € D, that is, 1 < py < m,1 < qo < [ and
1 < po+qo— Agk)- In this case, Ayy —po+1 < go < land Ay —1+1 < pg < m. Hence
mAl—=Agy > Land D = {(p,q) | Mgy —1+1 < p <m, Mgy —p+1 < ¢ < 1}. Conversely,
if m 41— Ay > 1, then (m,1) ED Thus D # 0 if and only if m +1 — Mgy > 1. Tt
follows from (1) that, for m +1 — Ajx) > 1,

m l

PHa—Ag (k)
XitYij = g E Tm—pt1Y1—q+1Gy; -~ 7
P=Ag(k) —lH1 a=Ag (k) —p+1

PHI=Ag(k)

§ E Tm—p+1Yp+1— Ag(k)— u+1G

P=Ag(ry—l+1 u=1

erlf/\g(k) erl*)\g(k)*’UJrl

Z Z xvym—&-l—)\g(k)—u-&-l—v-&-lG?j

v=1 u=1

m+l—>\g(k) m+l—)\g(k) —u+1
u
= E xvym-‘rl—)\g(k)—u-&-l—v-&-lGij-

u=1 v=1
Thus (2) follows. O
If we write a € M,(R) as an m, X ms block matrix a = (A,,) with A4,, €
M),y %2, (), then a € f;iSy(c,R)f; if and only if the (4,j)-block Aj;; satisfies

JoiyAij = AijJyy) and Ay, = 0 for (p,q) # (i,7). Thus there is an isomorphism of
R-modules

]\ij — Aij = fiSn(c, R)fj

05 p 0ij P
= § :aPQ :61’*“+1’Ag(j>*“+1) = § :aP(E :e“gmhu)*/\g<i)+P*u+1’“g<a’>h(j>*uﬂ)’
p=1 u=1 p=1 u=1
induced by the canonical monomorphism of R-modules

Pij o My xx,) () — M (R),

Ag (i) Ag(5) Ag (i) Ag(5)

b= Z Z bpuepu — Z Z bP“e”gmh(z) Ag(i) TP g (5)n(5) ~Ag(5) TUs

p=1 u=1 p=1 u=1
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which sends b = (bp,) € M,y %2 g0 (R) to an mg X mg block matrix in which b is in the
(i,7)-block and 0 in all other blocks. Let

p
/U P U
Fi = (G)eis = Z Engiyn(y —Ag(iy tP—utlnggyngy —utl:

u=1

Then {F}; [ 1 <p < 6;;} is an R-basis of f;Sy(c, R)f; and {F/; |1 <i,j <my,1<p<
6;;} is an R-basis of Sy(c, R).

Lemma 2.5. If 1 <14,j,k, 1 <m,,1 <p < 0,1 < q< 0y, then

0 ifk#1or p+q— Ay <1,
FPFL = 61, (GP G )i = _ g
il = 0ua(C Gy {Fj‘}*q M ik =1 and p+q — Ay > 1.
Proof. Clearly, F}; € f;Afy and F; € fihf;. If k # [, then fifi = 0, and therefore
FﬁcFlZ‘ =0.If k=1, then

p q

P 9
Fika:j = (Z eng(i)n(i)—Ag(i)-&-p—u-i-l,ng(k)h(k)—u+1)(z eng(mh(k)—/\g(k>+q—v+1,ng(j)h<j>—v+1)

u=1 v=1

l
NE
MQ

5"g<k>h<k->—“+1vng(k>h<k) =Ag(0) Fa=v+16n () n () = Xg @y FP—uF1ng()n() —v+1

Il
-

M- L

u

:(Z

u=1lv

v

5Ag(k.) 7u+1,q7v+1€p7u+1,)\g(j)7v+1)SDij
1

= (G}, G1;)eij-

If p+q— Agry < 1, then G}, G]; = 0 by Lemma 2.4(1), and therefore I [}, = 0.
If p+q— Agwy > 1, then it follows from Lemma 2.4(1) that F}, Fy; = (G}.G{,)pi; =

P+Ha—Ag(k) P ta—Ag(k)
(Gy; )eij = Fi; .

Lemma 2.6. Let ¢ = diag(J™,J22,...,J%) € M,(R) be a Jordan-block matriz with
Jordan blocks J; = [r,1,0,---,0] € My,(R) for 1 < j < s where J; appears b; times. If
AL > Ay > - > Ay, then

(1) fiSn(c, R)fi ~ R[x]/(x?s®) for 1 <i < my.

(2) fiSule, R)fj is a free R-module with an R-basis {F}; | 1 <p < 0;;} of rank 0;; for
1<4,§ < m,.

(3) Sn(c, R) is a free R-module with an R-basis {F}; | 1 <i,j < ms, 1 <p <0} of
rank Y i (m? —m2_)\;.

(4) If R is a local ring and all b; = 1, then

(i) {f1, f2, -, fs} is a complete set of primitive orthogonal idempotents of Sy(c, R).
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(ii) Sn(c, R) is a basic algebra, that is, Sn(c, R)fi % Sn(c, R)f; for all i,j with 1 <
i#j<s.

(111) rad(S’n(qR)) = {a = (Aij)sxs S Sn(C,R) | Ay = [mﬂ,xig,...,xi)\i], i1 €
rad(R),z;; € R,1 <1i <s,2 <j < \}. Particularly, if R is a field, then rad(Sy(c, R))
is a free R-module with an R-basis {Ff; [1<i,j7<s1<p< Hij}\{FfZ" 1<i<s}.

(iv) Sn(c, R) is an indecomposable algebra, that is, 1 and O are the only central idem-
potents of Sp(c, R).

Proof. (1)-(3) are clear. It remains only to prove (4). Since b; =1 for 1 < i < s, we have
g(i) =7 and 6;; = min{\;, \;} for 1 <i,j <s.

(i) Since R is a local ring, the only idempotent elements in R are 0 and 1. This implies
that the only idempotent elements in R[z]/(2*¢) are 0 and 1, too. It follows from (1)
that f;S, (¢, R)f; contains only 0 and 1 as idempotent elements. Hence f; is primitive,
and therefore all f; form a complete set of primitive orthogonal idempotents of S, (¢, R).

(ii) By (2), Sn(c, R)f; is a free R-module of rank i\; + Z;=z’+1 Ap for 1 <4 <'s. For
1 <i<j <s, it follows from A; > A; that the R-rank of S,(c, R)f; is bigger than
the R-rank of S,(c, R)f;. Thus the R-rank of S,(c, R)f; does not equal the R-rank of
Sn(c, R)fj for 1 <i# j <s. Hence S,(c,R)f; 2 Sn(c, R)f; for i # j. This implies that
Sn(c, R) is a basic algebra.

(iii) Let N :={a = (Aij)sxs € Sn(c, R) | Ay = [xi1, i2, ..., x|, xin € rad(R), x45 €
R,1<i<s,2<j<MX\} Then fiNf; = fiSn(c,R)f; for 1 < i # j < s. If i = j, then
fiNfi = {([xr, z2, . 2x,])ei | 21 € rad(R), 2y € R,2 < u < A;}. By Lemma 2.2(2),
for x1,x2,...,25, € R, we have

([xlwx%---a @n = Zxkz p+1G Pii = kaz p+lF —xlF)\ + Z Tx; p+1
p=1

If we take z; = 0, then we deduce F. € f;Nf; for 1 < p < \;, and therefore {F},
1 <p< N} C fiNfi. If Ris a field, then rad(R) = 0 and f;Nf; is an R-space
with an R-basis {F | 1 < p < A;}. In this case, N is an R-space with an R-basis
{Fh 1<) <s,1<p< 0 \{Fy (3).

For 1 < i < s, Sp(c,R)f; is indecomposable and projective by (1), and therefore
fiSn(c, R) f; is a local ring. It follows from [1, Proposition 17.19] that S,(c, R)f; is a
projective cover of a simple module. This means that the radical of S, (¢, R) f; is the only
maximal submodule of S, (c, R)f;. If Nf; is a maximal submodule of S, (¢, R) f;, then
N f; is the radical of the Sy, (¢, R)-module S, (¢, R) f;. This implies rad(S, (¢, R)) = N. So,
we need only to show that N f; is a maximal submodule of S, (¢, R) f; for 1 <i < s. For
this purpose, we first prove that N f; is an Sy, (¢, R)-submodule of S, (¢, R) f;. It is an R-
submodule of S, (¢, R) f;. We have to prove f;S,(c, R)Nf; C fjNf; C Nf;for1l<j <s.
For j # i, we have f;Nf; = f;Sn(c, R) fi. Then f;S,(c, R)Nf; C f;Sn(c,R)fi = fiNfi C
N f;. For j =i, we have to show f;S, (¢, R)N f; C N f;. This is equivalent to saying that

fiSn(c, R)fuNfi: C fiNf; C N f; holds for all 1 < k < s. So, suppose
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Ok Oix
a=> a5, p1Fl € fiSn(c,R)fx, b= bp, q1F}; € fiNfi,
p=1 q=1

with all a;,b; € R, where 60;;; = min{\;, A}, we show ab € f;Nf; C Nf;. Actually, by
Lemma 2.4(2), if 20;;, — A\, < 1, then ab =0 € f; N f; C N f;. Now, suppose 20;;, — A\, > 1.
By definition,

Oik Oik
ab = (Z aﬁikprrlFﬁg)(Z b9ik*q+1ng)
p=1

q=1

= Z aeik_p+1b0ik_q+1(F£cF]€qi) (by Lemma 2'5)

1<p,q<0;x
= Z a9, —p+100,—q+1(G3,G1;) i (by Lemma 2.4(2))
1<p,q<0;x

20— Ak 20 — A —u+1

= ( E E avbQ(hkak7u+1fv+1GZ')90ii~
u=1 v=1

If i # k, then 260, — A\, = 2min{\;, \g } — Ap < A; and \; — (26, — A\g) > 1. In this case,

204k — Ak
ab=([0,---,0,a1b1,a1by + asby, -, Z pb20, —Ap—v+1]) Piis

v=1

where 0 appears \; — (26, — \) times. Note that f;Nf; = {([x1, 22, ..., 2x,])pu | 21 €
rad(R),z, € R,2 <u < \;}. Thus ab € f;Nf; C N f;.
If ¢ = k, then 0, = min{\;, \y} = \;, and therefore

Ai Ai—u+1
ab = (Z Z aubr; —ut1-0+1G;) Piis
u=1 wv=1
that is, ab is an s x s block matrix with [a1b1,a1by + agby, - - ,ij‘:l ayby, —y+1] in the

(2,4)-block of size \; x A;, and 0 in the (p, g)-block of size A\, x Aq if (p,q) # (4,7). As
fiNfi = {([z1,22,...,2x,])pi | 21 € rad(R), 2y € R,2 < u < N}, it follows from
by € rad(R) that a;b; € rad(R) and ab € f;Nf; C Nf;. Hence N f; is a submodule of
the S, (¢, R)-module S, (c, R) f;.

Now, we show that N f; is a maximal submodule of S, (¢, R)f;. Suppose that M is a
submodule of Sy, (¢, R) f; with N f; C M. Since N f; is properly contained in M, there is an
element y € M\N f;. Since y = fry+-- -+ fiy+-- -+ fsy and f;S,(c, R) fi C N f; for j # i,
we deduce f;y = f;yfi ¢ N f;. This means that if we write (f;yfi)e5;" = [Y1,¥2, Y.,
then y; ¢ rad(R). Since R is a local ring, the elements in R\ rad(R) are invertible in R.
Thus
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EY = ([1,0,--,0])ps; = (v (1,2, 5] — 0,92, o yn])) s
= yl_l([y17y27 o 7y)\i])90ii - yl_l([oay27 o 7ZU/\LDSOM

Thanks to ([y1,y2," -, yx )i = fiyfi € M and ([0,y2,--- ,yz,])pii € fiNfi € M, we
have F))' € M. Moreover, {F¥; | 1 <u < 5,1 < p < 0,}\{F)'} € Nf; € M. This
means that M contains an R-basis of Sy, (c, R)f; by (3), and therefore M = S, (¢, R) f;.
Hence N f; is a maximal submodule of S, (¢, R) f;, and rad(Sy,(c, R)) = N.

(iv) This follows from the fact that f;S,(c, R)f; # 0 for all 4,5 by (3). O

Finally, we assume that R has no zero-divisors and c is a Jordan-block matrix with
different eigenvalues in Z(R).

In this case we may suppose that ¢ has ¢ distinct eigenvalues in R, say r1,--- , ¢, and
that, for each eigenvalue 7;, there are s; Jordan-blocks J;; of different sizes A;; with the
same eigenvalue r; for 1 < j < s;, such that J;; appears b;; times in c, that is,

3 b b2 b1s ba1  7baz basy bt b2 bes
(H) c= dlag(Jlil’Jlé [ 7J15117J21 ’J22 7J252 [ 7Jt1“v<]t2t thstt)
€ M,(R),

where J;; = [r;, 1,0,...,0] € My, (R) and b;; > 1 for 1 < j <s; and 1 <i < t. Further,
we assume A1 > g > -+ > N, 75 € Z(R), and r; # r; for i # j.

Let A; := (Ai1, Aiz, -+, Ais;) (with a fixed ordering). The set {\; | 1 < i <t} is called
the block type of c. If t = 1, that is, ¢ is a Jordan-block matrix with the same eigenvalue,
then the block type of ¢ just encodes the different sizes of blocks in c¢. If d is similar to a
Jordan-block matrix ¢ by an invertible matrix over R, then the block type of d is defined
to be the block type of c.

We define

Ti

Si 1
n; = Zbip/\ip’ T0:=0, 7 := an, € = Z epp € M, (R), 1 <i<t.
p=1 p=1

p=Ti—1+1

Note that [n] = {r,-1+v € N |1 < ¢ <t1<wv <mng}andthat 1 =3 &

is a decomposition of I,, into pairwise orthogonal central idempotents in S, (¢, R). For
1 < i <t, we define ¢; := diag(J%*, J%?, - Jbi”) € M,,(R). It follows from r; # r;

)48,

for 1 <4 # j <t and Lemma 2.2(2) that S,(c, R) is isomorphic to
diag(Sp, (c1, R), Sn,(c2, R), ..., Sn,(ct, R))

as rings. We write these observations as the following lemma for reference.

Lemma 2.7. If R has no zero-divisors and c is of the form (1), then

() 1= ZZ:I €; 18 a decomposition of 1 into pairwise orthogonal central idempotents
in Sp(c, R).
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(2) S,(c,R) ~ diag(Sn,(c1, R), Sn,(c2, R),...,Sn,(ct, R)) as rings, that is, Sy(c, R)
~ S,,(c1,R) X Sp,(ca, R) X --+ x Sy, (¢, R).

Thus the study of S, (¢, R) related to a general Jordan-similar matrix ¢ can be reduced
to the ones related to Jordan-similar matrices with the same eigenvalues, while the latter
cannot be further reduced by Example 2.3.

For the convenience of the reader, we quote the following elementary fact which will
be used frequently in proofs.

Lemma 2.8. Suppose that G is an additive group and n is a positive integer. If apq € G
for1<q<p<mn, then

n n n n n—q+1 n n—u+t+l
E E Upg = Qpg = E E Outq—-1,9 = E E Gutq—1,9-
p=1q=1 qg=1 p=¢q g=1 u=1 u=1 ¢g=1

3. Frobenius extensions

This section is devoted to proving Theorem 1.2.

Let A be a unitary ring. If B a subring of A with the same identity, then we say
that B C A is an extension of rings. Frobenius extensions, initiated by Kasch, form
one of the most prominent instances of extensions of rings. They are a generalization
of Frobenius algebras over a field and have played an important role in many aspects
of mathematics from representation theory (see [20], [18]), knot theory and solutions to
Yang-Baxter equations (see [9]), to topological quantum field theories and code theory
(see [12] and [5]). A good introduction to the subject for beginners may be the book by
Kadison (see [9]).

Definition 3.1. (1) An extension B C A of rings is called a Frobenius extension if pA is
a finitely generated projective B-module and Hompg(pA, B) ~ 4Ap as A-B-bimodules.

(2) An extension B C A is said to be separable if the multiplication map A ® g A —
A, x ®y — xy, is a split surjective homomorphism of A-bimodules, and split if the
B-bimodule gBp is a direct summand of gAp.

We need the following properties of Frobenius extensions. For proofs; we refer to [8,
Theorem 1.2, p.3; Corollaries 2.16-17, p.15].

Lemma 3.2. Let B C A be an extension of rings.

(1) The extension is a Frobenius extension if and only if there exist a B-B-bimodule
homomorphism E € Homp_g(gAp, sBg), and elements z;,y; € A, 1 < i < n, such
that, for any a € A,

in (yia)E=a= Z(aojl)Ey,

2
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In this case, (E,x;,y;) is called a Frobenius system of the extension.

(2) Suppose that B C A is a Frobenius extension with a Frobenius system (E, z;,y;).
Then B C A is split if and only if there exists d € Cy(B) :={a € A | ab=ba for allb €
B} such that E(d) = 1, and separable if and only if there exists d € Ca(B) such that

Z?:l xidyi =1.
Examples of Frobenius extensions are group Galois extensions (see [3]).

Definition 3.3. Suppose G is a finite group acting on an algebra A with the subalgebra B
of invariants, that is, B = AY := {a € A | a? = a,g € G}. The extension B C A is called
G-Galois if there are finite number of elements x;,y; € A such that ), 2;y; = 1 and
> iyl = 0 for each nonidentity g in G. Equivalently )", 2fy; = 0 if g is nonidentity,
and 1 if g is the identity in G.

Given such a G-Galois extension B := A% C A, the B-B-bimodule homomorphism
E : A — B defined by a — dea a? together with {x;,y;} forms a Frobenius system.
Thus the extension B C A is a separable, Frobenius extension. Moreover, it is shown in
[3] that if A is a G-Galois extension over B, then End(Apg) is isomorphic to the skew
group algebra of G over A. For further information on G-Galois extensions and their
generalizations, we refer to [10].

Immediately, we have the basic observations on Frobenius extensions.

Lemma 3.4. If B; C A, is a Frobenius extension of rings for 1 < i < s, then By X By X
<o+ X Bg C Ay X Ay X -+ X Ag is a Frobenius extension of rings.

The following lemma is easy and its proof is left to the reader.

Lemma 3.5. Let f : B — A and g : C — A be extensions of rings. Assume that there
exist ring isomorphisms ¢ : B — C and ¢ : A — A such that f1» = pg. Then B C A is
a Frobenius extension if and only if C C A is a Frobenius extension. Moreover, B C A
is separable (or split) if and only if C C A is separable (or split).

Consequently, we have the following lemma from Lemmas 3.5 and 2.1(1).

Lemma 3.6. Suppose that two matrices ¢ and d in My, (R) are similar. Then Sy(c, R)

N 1N

M, (R) is a Frobenius (or separable, or split) extension if and only if so is S,(d, R)
M, (R).

Our consideration on centralizer matrix algebras is divided into two cases. First, we
consider the centralizers of invertible matrices.

Theorem 3.7. If R is a unitary ring and G is a finite subgroup of GL, (R) with a G-free
point, then S, (G, R) C M,,(R) is a G-Galois extension. In particular, the extension is a
separable Frobenius extension.
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Proof. By definition, S, (G, R) is just the invariant matrices of M,,(R) with respect to
G acting on M, (R) by conjugation, that is, S,(G,R) = {a € M, (R) | a9 := gag™' =
a} = M, (R)S

Suppose that i € [n] is a G-free point. We define z; := ej; and y; = e;; € M,(R)
for j € [n]. Then 377 ajy; = > ejieij = Y5y €55 = In. For g = (gp) € G\ {I},
since i is a G-free point, it follows that =, x;(y;)? = >, 2i9y;9~" = X, ejigeijg~! =
>, giiejj9~ " = 0. By Definition 3.3, S,,(G, R) C M, (R) is a G-Galois extension. There-
fore S, (G, R) € M, (R) is a separable Frobenius extension. O

As a consequence of Theorem 3.7, we have the corollary.

Corollary 3.8. Let G be a finite subgroup of GL,(R) with a G-free point. If |G| is invert-
ible in R, then

(1) Sh(G,R) C M,(R) is a split Frobenius extension, and global and dominant di-
mensions of Sp(G, R) are the same as the ones of R, respectively.

(2) S, (G, R) is semisimple if R is semisimple.

Proof. (1) Since

Zh |G|Zhh1—1eS(GR)

heG heG

the extension is split by Lemma 3.2(2). The statement on global dimensions follows
from the fact that the extension is a split, separable Frobenius extension. In the case,
the global dimension of S, (G, R) equals the one of M, (R) (see [8, p.14]), and the latter
equals the global dimension of R since R and M, (R) are Morita equivalent. For dominant
dimensions, the statement follows from [18] or [15, p.91], where the definition of dominant
dimensions can also be founded.

(2) If R is a semisimple ring and |G| is invertible in R, then S, (G, R) is semisimple.
This follows from [14, Theorem 1.14] which says that, for a finite group acting on a ring
R, the Jacobson radical of the fixed ring is the intersection of the Jacobson radical of R
with the fixed ring itself if the order of G is invertible in R. O

Now, we apply Theorem 1.2 to the centralizers of permutation matrices. To state our
result precisely, we first introduce a few notions.

For a natural number n, we denote by X,, the symmetric group of all permutations
on [n]. Any o € 3, can be written as a product of disjoint cycles, say 0 = 0102...0s,
where o; is a A;-cycle. Here, ); is allowed to be 1, and A = (A1, Mg, ..., \s) is called the
cycle type of 0. Clearly, the order of o is the least common multiple of As, denoted by
lem(A1, Az, ..., As). Let ¢, (0) := eq,(1)0 +€2,2)0 ++ - +€n (n)s De the permutation matrix
in M, (R) corresponding to o. If the subscript n in ¢, (o) is clear from the context, we
simply write ¢, for ¢, (o). We have cycr = cory ¢ = co-1 = (¢o) ' and (¢, )ij = 8(i)o,j
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for i, j € [n]. Recall that a’ denotes the transpose of the matrix a and d;; is the Kronecker
symbol.

Let G be a subgroup of X, acting naturally on [n], and let Pg := {c, | o € G} be the
set of all permutation matrices induced by the elements of G. Then Pg is clearly a finite
subgroup of GL,(R) isomorphic to G. For 0 € G and i € [n], we have (¢5)ii = 0(5)0.i-
Thus (¢s)i; = 1g if and only if (i)o = 4. Hence i is a Pg-free point if and only if
{0 € G| (i)o =i} = 1g, that is, i is a Pg-free point if and only if the stabilizer stg(7)
of ¢ under G is trivial. In this case, we also say that ¢ is a G-free point. If G = (o) for
o € X, then G-free points will simply be called o-free points. If X; is the content of o;
for 1 <i <'s, then X; forms a G-orbit, | X;| = A; and [n] = (J;_, X;. Moreover, j € X;
is a o-free point if and only if the order of ¢ is just \;. This implies that there is a o-free
point in [n] if and only if there is some \; such that A\;|A; forall 1 <i <s.

Clearly, G also acts on M, (R) by

M, (R) x G — My (R), (aij)° = (ag)o,)s)s (aij) € Mu(R), 0 € G.

Since coac,' = (32111 €i(i)o) (X p.q @palpa) X j—1 €j.(ho—1) = 2ij Uiye,()otis = a’ for
a = (apy) € M,(R), we have S,,(Pg, R) = {a € M,,(R) | a° = a,0 € G} = M, (R), the
fixed ring of G in M, (R). For brevity, we write S, (G, R) for S,,(Pg, R), and S, (o, R)
for S, ((0),R) if 0 € %,,.

Corollary 3.9. Let R be a ring and G be a subgroup of X, with a G-free point. Then
(1) Sh(G,R) C M,(R) is a G-Galois extension. Particularly, a separable Frobenius
extension.
(2) If |G| is invertible in a ring R, then
(i) Sn(G,R) C M, (R) is a split extension, and global and dominant dimensions of
Sn(G, R) are the same as the ones of R, respectively.
(ii) Sn(G, R) is semisimple if R is semisimple.

Note that the condition on G = (o) in Corollary 3.9 is satisfied for o : i —n+1 — .
Thus Corollary 3.9 extends the first statement of [20, Theorem (1), p.318].

Having considered the centralizers of invertible matrices in Theorem 1.2, we next
investigate the centralizers of not necessarily invertible matrices.

Recall that a matrix in M, (R) is called a Jordan-similar matrix if it is similar to a
Jordan-block matrix by a matrix in GL,,(R). As is known, every square matrix over an
algebraically closed field is a Jordan-similar matrix.

Now, let ¢ be a Jordan-block matrix as in (1), say

c = diag(J, Jb2, .- Jb) € M, (R),

with Jordan blocks J; = [r,1,0,---,0] € My,(R) for 1 < j < s and r € Z(R), where J;
appears b; times and Ay > Ay > -+ > A,



C.C. Xi, J.B. Zhang / Linear Algebra and its Applications 622 (2021) 215-249 233

M, 2y (R) — ]\Z-j of R-modules as follows. If p;; <0, we set Ey; = 0. If p;; > 0, we
define

For 1 < i, < ms, let pij == Mgy + Ag(j) — A1. Further, we define a map Ej; :

pij pij—p+1
. A — § : § : P A
Eij : M)‘g(i)X)\g(j)(R) — Aij7 a:= (akl) = akg(i)—u+17PiJ—P+1—u+1Gij € Aij'
p=1 wu=1

Then Ej;; is a homomorphism of R-modules. Next, we extend E;; to a map E from
M, (R) to A by setting

E: Mu(R) — A, (Aij)m,xm, = (A)Ey) = > ((Aj)Ey)eu,

1<i,j<ms

where A;; € M, xx,;, (R) for 1 <i,j < mg. This map has the property.

g(j)(
Lemma 3.10. Let ¢ = diag(J%, J52, -+, J%) € M,(R) be a Jordan-block matriz with
Jordan blocks J; = [r,1,0,---,0] € My,(R) for 1 < j < s and r € Z(R), where J;
appears b; times and Ay > Ag > -+ > A;. Then
(1) E is a homomorphism of A-A-bimodules.
(2) If a = (auw) € Mp(R) and 1 < i <n, then
(i) eu(eAl_’Z-a)E = ey4a, that is, 611(2221 aipe{hp)E = 22:1 Aip€ip-
(ii) (aesn)Eex, 1 = aeq, that is, (ZZ:1 apiept)Eex, 1 = ZZ:l Api€pl -
(3) If there exists an n x n matriz z € My(R) such that (2)E =1 and za = az for all
a €A, then c=rl,.

Proof. (1) The map E is additive because each E;; is additive. Further, we prove
(xa)E = z(a)E and (ax)E = (a)Ex for any € A and a € M,,(R).

This is equivalent to saying that (X, Aw;j)Eij = Xik(Awj)Egj for 1 <i,k,j <mg, X €

Aik and Akj (S MAg(k)X)\g(j)(R)'

Indeed, let | := max{i,k}. Then A,q) = min{A;i), Ay} = Oar and py; < pi;. We
Ag(l)

may write Xy, = Y % $Ag(l)—p+1ij € Aix and Agj = (auw) € My, x2,;, (R). Then
Ag(1) Ag(k) Ag(s)
XikAk:j § xkq(l) p+1 E ep w+1,Ag (k) — w+1 E § aqveqv
qg=1 v=1
Mgy p Aa(k) Ag(h)
= § § x/\g(l)7p+1aqv6)\g(k)7w+1,qep7w+1,v
p=1 w=1 ¢g=1 v=1
Ag(5) Ag()

p
= E :x)‘g(l)7p+1a')\g(k)7w+17vep7w+17v (by Lemma 2'8)

IS
Il
—

iS]
Il
-
g
Il
-
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Ag(i) Ag(1) Ag(ny —ut1

E E E mAg(,)7(u+w71)+1a)\g(k)—'LU+17U€W)'

v=1 u=1 w=1

We write X Arj as a Mgy X Ag(;) matrix (by,) with the (u,v)-entry

)\g(l)—u—i-l
buv - Z -r)\g“)—u—i—l—w—l-la/\g(k)—w-i-l,v
w=1
forl<u< )\g(l) and 1 <wv < )\g(j), and other entries 0.
Next, we consider (X;iAx;)E;;. By definition, if p;; < 0, then (X;zA;)Ei; = 0.
Suppose p;; > 0. Then

pij pij—p+1
— P
(XinAw)Bij =Y D ba—t4tpy—pri—t+1Ghy.
p=1 t=1

Note that by, = 0 for u > Ayq). Let D := {(p,t) |1 <p < pij, 1 <t < pij—p+1, Mgy —
t+1 < Agpy}. Then bxyy—t+1,p15—p+1—t+1 = 0 for (p, t) ¢ D, and therefore

pij pij—p+1
— /2 P
(XinAwj)Eij = Z E Ox gy —t+1,pi5—p+1—t+1Gij = E by —t+1,pi5—p+1-t+1Gij
p=1 t=1 (p,t)eD

If D = 0, then (X;,Ax;)E;; = 0. Now we take into account the case D # (). Let
(Po,to) € D, that is, 1 < pg < pij, 1 <to < pij —po + 1, Ag) —to +1 < Agpy. It follows
from )\g(i) > )‘g(l) that /\g(i)_)\g(l)+1 <tg < pij—po+1. Then py < pij_)\g(i)+/\g(l) = pij-
Hence 1 < po < pyj and D = {(p,t) | 1 < p < pij, Ags) — Mgy +1 <t < piy —p+ 1}
Conversely, if p;; > 1, then (1, p;;) € D. Thus D # ( if and only if p;; > 1. So, if D # 0,
then

_ 4
(XikAr)Eij = > bayo—t41.00—pr1-141GY
(p,t)€D

pLj pij—p+1

— P
_§ : E : b)‘g(i)_t+17pij_p+1_t+1Gij

P=1t=Xg() = Ag(n+1

pij pi;—p+1

— /4
- Z Z b/\g(l)_q+1aplj—P+1—Q+1Gij
p=1 g=1

pij PP+l g

— P
=D > > Tgwr@a oy —pti—gr1Gh  (by Lemma 2.8)
p=1 g=1 w=1

pij pi;—p+1 pi—p+l—v+1

— P
= E E x'ua)\g(k)7w+1,p1j7p+17v+17w+lGij~
p=1 wv=1 w=1
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Note that we always have p;; < p;;, and therefore the following holds always

0 if pij < 1,
(XikAk') = pij pij—p+1piy—p+l—v+l
J p .
> 2 > '1:1’&)\g(k)_w+1vplj_p+1—v+1—w+1Gij if py; > 1.
p=1 wv=1 w=1

It remains to consider X;i (Ag;)Ek;. Firstly, (Ak;)Exk; = 0 for pr; < 0 by definition.
Assume py; > 0. Then

Pkj Prj—p+1

(A’“j)Ekj:Z( Z gyt Loy —p+1—u+1) Gl

p=1 u=1

A ~ ~
Note that X, = Zpg(l x)\g(l),erlek € Nk, (Akj)Ekj € Akj and >\g(l) + Pk — )‘g(k) =
Ag(t) + Ag(k) + Ag(j) — A1 — Ag(r) = puij- According to Lemma 2.4(2), if pj; < 1, then
Xik(Agj)Er; = 05 if pj; > 1, then

pij pij—p+1(pij—p+1)—v+1

Xik Ak] Ek] Z Z Z ‘Tva)\g(k)—w+17(Plj—P+1)—U+1—w+1ij'
Since we always have p;; < py;, it follows that

Xik(Akj) B

0 if P < 1,
={ py pj=ptl(p—ptl)—v+1

P 3 .
. . ) ‘T'Ua)\g(k)_w+17(pl]'—p+1)—U+1—w+1Gij lfplg > 1.
p= v= w=

Hence (X, Akj)Eij = Xik(Ag;j)Er; holds for all 1 < 4,k,j < m,, Xip € Ay, and
Apj € M, %2y, (1) Thus (x a)E = x(a)E for any 2 € A and a € M,,(R). This shows
that F is a homomorphism of A-modules. Similarly, we show that F is a homomorphism
of right A-modules. Thus E is a homomorphism of A-A-bimodules.

(2) Now, we prove that the equality ell(eAMa)E = ey;a holds for 1 < i < n. In fact,
the matrix ey, ;a has the A\;-th row equal to the i-th row of a, and the other rows equal
to 0, that is,

n ms Ag(h)
€0 = § :aipehvp = § :(E : @ing o) A +0EA ) PL-
p=1 7j=1 v=1
q(J)
So ey, ;a can be written as an mg x m, block matrix with >, % 1 @iing(yne)—Ag() o

in the (1, ]) block for 1 < j < ms and 0 in the other blocks. Then (ey,a)E =

Z;n:sl((z gq) iyng(iyne— /\9(1)+Ue/\1v)E1])%013 and
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ms 9(7)
ein(er, a)E = Z(eu(z Qisngioni—Ae(y+vE€x0) E1)p1;  (by the definition of Ey;)
7j=1 v=1

ms Ag(i)
Z Zaz Ng(n(i) —PT1ELA () — p+1>901]

ms Ag(d)
Z Z Gingyn)— /\g(J)‘i‘welw)(le (by the definition of Splj)

Ag(5)

Z Qg (yn) —Xg () TWEL NG Gyn () —Ag () W
w=1

[ ZMu

Aip€lp

S
Il
-

= €1;Q.

The second last equality is due to [n] = {ng;)n)—Ag()Tw | 1 < j <mg, 1 <w < Agj) )
Similarly, we show (aeﬂ)Ee)\hl =ae; for 1 <¢ < n.

(3) We write z € M,,(R) as an ms X m; block matrix z = (Z;;) with Z;; € My, xx,;
for 1 <4,5 < mg. For 1 <i < ms, we write Z;; = (2u0) € My, (R). It follows from
(Z)E =1 that (Z;;)E; = I, .., that is,

g(i)?

pii pii—p+1
() (Zi)Bi =Y (D 2rm-utipnpi1—up)Gh =D, = Gy 7.
p=1 u=1

Since pi; = 2Xg() — A1 < Agyy and {G¥. |1 < p < p;} is an R-basis of A;;, we obtain
pii = Ag(s), and therefore A\g;) = A for 1 < i < my. Particularly, it follows from
g(ms) = s that Ay = Ag(m,) = A1. This implies s = 1 by our assumption on A; for
1 < ¢ < s. Hence ¢ is a block matrix with all blocks of the same size. Moreover, by
comparing the coefficients of G in (), we deduce

Z)\l,l = lR.

Next, we show that each of these blocks is in fact a 1 x 1 matrix. For an m x m4 block
matrix a = (A;;) € A with A;; € Ayj, za = (o) ZipApj) and az = (301 AipZp;).
Thus the condition za = az for all a € A is equivalent to saying that Zp: ZZpAm =
221:11 AipZy,; holds for all A4,; € Apj,Ajp € /~\jp,1 < p,i,j < my. In particular, for
1<i<m,if A;jp =0and Ap; =0 for 1 <p #1i < my, we get Z;; Ay = Ay Zy; for all
Ay € Ay Now, we write Ay = [ay, a9, ,ay,] = Z;‘l:l 25:1 Ay —pt+1€p—qt1, A —g+1-
Then
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A1
AyiZiy = E Eakfquleveuw and

1<u,v<A1 k=u

A1
Zii Ay = E E Zup— (A —w) OAy —p+1C€uw-

1<u,w<A; p=A1—w+1

Suppose A1 > 2. Then (A;iZii)a—1,1 = G22x31 + a12x,—1,1 and (Z;Ai)a 11 =
2y —1,1a1. Specially, if a; = a2 = 1, then it follows from Z;;A;; = A;; Z;; that 2y, = 0.
This contradicts to zx,17 = 1. Thus A; = 1 and each block is a 1 x 1 matrix. This means
c=rl,. O

Theorem 3.11. Suppose that R has no zero-divisors. Let ¢ € M,(R) be a Jordan-similar
matriz with all eigenvalues in Z(R). Then

(1) Sn(c, R) € M, (R) is a separable Frobenius extension.

(2) Sn(c,R) € M,(R) is a split extension if and only if c is similar to diag(rily,,,
rolp,, - ridpn,) withr; #rj for1 <i#j<t, n; >1 and 22:1 n; =n.

(3) Sn(e,R) is semisimple if and only if R is semisimple and c is similar to
diag(riln,, 7200y, -+, redn,), where r; #1j for 1 <i#j<t, n; >1 and Z;zl n; =n.

Proof. By Lemma 3.6, we may assume ¢ = diag(cy,ca,...,¢) as in (). Recall that

70 =0, 7 := 22:1 ny and n; := Y00 biphip for 1 < <t with 22:1 S Tp—1 +

v = n (see the end of Section 2). The ring S,(c,R) is isomorphic to the ring

diag(Sn, (c1, R), Sny(c2, R), ..., Sn, (ct, R)) with >, nj = n. We denote Sy, (c;, R) by A;.
For 1 < 5 <t, we define a homomorphism of R-modules:

wj : Mnj (R) — Mn(R)7 Z Loy Cup F7 Z Lyvlr;_14u,mj_14v)

1<u,v<n; 1<u,v<n;

which sends * = (24,) € M,,(R) to a t x t block matrix in which = is in the (j,j)-
block of size n; x n; and 0 in (p, ¢)-block of size n, x ng with (p,q) # (j,j). Clearly,
(e11)Vj = er,_141,7_14+1 € Mp(R), (a1)(az); = (ara2)tp; for ay,ay € My, (R) and
(M, (R))b; € €jMy(R)ej, where 1 = Z;zl €p is a decomposition of 1 into pairwise
orthogonal idempotents in M, (R) (see Section 2). Particularly, for 1 < 5,1 < t and
x € My, (R),

(x)  (er)¥j(@)r = (er)Vjeje(x)hy = d(err)i(x)y = 65 (er1 )iy

Since the Jordan blocks in c; have the same eigenvalues, we have a homomorphism
Ej : My, (R) — Aj of Aj-Aj-bimodules as defined in Lemma 3.10 (see the definition of

E). Further, we define a map

E: M,(R) — Su(c,R),
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t
(Auo) = diag((A11)Er, (A22) Bs, ., (Au) Er) = Y (App) Epip,

p=1

where (A,,) is a ¢ x t block matrix with the block A,, € M, xn, (R) for 1 < u,v < t.
Clearly, E is a homomorphism of S, (¢, R)-S,, (¢, R)-bimodules.
Let

t t
T; 1= Zei’n’*l-"_l’ Yi = Ze%fl‘*‘)‘pl»i S Mn(R), 1<t <n.

p=1 p=1

(1) We show that (E,x;,y;) is a Frobenius system. Since E is a homomorphism
of S,(c,R)-Sy(c, R)-bimodules, it remains to verify that > . z;(y;a)E = a and
S (az;)Ey; = a for any a = (apq) € M, (R). Actually,

n n
(o) D @) E =Y Y eir,_s1(er,_,12,.10)E.
=1

1=11<p,q<t

For1<i<mnand1<p<t e t1(er,_,11r,,:0)E is an n x n matrix with the i-th
row equal to the 7,_1 + 1-th row of (eTq_lJr)\ql,ia)E and other rows equal to 0, while
€ry_14Xq1,i0 18 @ matrix which has the (7,1 + Ag1)-th row equal to the i-th row of a and
other rows equal to 0. Thus e;,_,4+x,,,ia can be written as a ¢ x t block matrix with 0
in the (7, j)-block of size n; x nj for 1 < j # ¢ < t, and Sor L a, Tq_140EAg,v i the
(¢, g)-block of size n, x ng. Then, by definition,

(ry 141,10 E = Z Ejb; + Zaz Tao1+0EA G w) Eqthg = Za% Tao1+0E€ g1 ,0) Eqg,

J#aq
ez
eTp71+177'p71+1(67q71+)\q1,ia)E = eTp71+17Tp71+1(§ :ai77q71+ve)\ql’v)Eq¢q
v=1

= (e1)p (D iy 1verg ) Eqthg  (by (%))
v=1

Nq

= 0pq (ell(z ai,qulJrve)\ql,v)Eq)wq

v=1

(by Lemma 3.10(2))

g
= Opq (Z i,ry_14+0€10) Vg
v=1

g

= 6pq Z Qg1 +vCrg_14+1,7g—1+vs

v=1
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and therefore the equality (#*) runs as follows:

n n
S wmWa)E=Y" Y (eir, i416r, 1417 141)(€r, 1120 i0) E
i=1

i=11<p,q<t

n Mg
= § : E : Ci,rp_1+1 (6Pq E :a/i7Tq71+veTq71+l7Tq—1+U)
v=1

i=11<p,q<t

(by[n]:{Tq_1+v€N|1§q§t,1§v§nq})

E Qi Ciy = Q.

1<i,uln

Similarly, Y7, (az;)Ey; = a. Thus S,(c,R) € M,(R) is a Frobenius extension by
Lemma 3.2(1).

To complete the proof of (1), it remains to prove that the Frobenius extension
Sn(c, R) C M, (R) is separable. By Lemma 3.2(2), we have to find an element d € M, (R)
satisfying the conditions in Lemma 3.2(2).

Let bj := by; and A; = Ay for 1 < j < s;. Then ny = ngp,, is the size of
ci. We define D; := Z;\i({) Gh = [1,1,...,1] € My, (R) for 1 < i < my,,d =
diag(D1, Do, ..., D, ) = SH(Dy) i € Mm( ) and d = (d)y; € M, (R). We show
that d is a desired element in M, (R). In fact, the condition da = ad for all a € A is
equivalent to saying that D;A;; = A;;D; holds for all A;; € ]\ij and 1 < 4,5 < myg.
We may write A;; = Zzzl agij,qHG?j € 1~X” It follows from Lemma 2.4(2) and
)‘g(i) + 0 — )‘g(i) =0;; > 1 that

05 0;5—u+1 0;5 0;5—u+1

Didij =3 D> @, winy-vp1Gly = Z Z Gy = AijDj

u=1 wv=1

for 1 < 4,5 < mg. This means da = ad for all a € A.
Now we show Y ' _| @pdyy = I,. It follows from d = (d)¢1 € e1 My, (R)er, €7y 141 =
Cw,ry_1+1€u AN €1, 43w = €ulr, 4 hgw for 1 <w <n,1 <wu<tthat

w=1 u=1

n n t t
Z mwdyw - Z (Z ew,'ru_l-&-l) ((CZ)%) (Z 67—1;—1+>\1/17“))
w=1 v=1
t

n t
= Z Z €w,r, 1 +1€u(€1(d)Pr€1) Z €vlr, 1+ AW

w=1u=1 v=1

n
:E E 8u1010€w (A)h1ex,, w E ew1€11(A)1ex,, A1y €rrs 0

w=11<u,v<t
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n

n
= ewilender,, x,)¥1exn,w = Y ewi(errde, x,)¥1ex, w-

w=1 w=1

Further, I,,, = Z:r:f 5 is a decomposition of I,,, into pairwise orthogonal idempotents
in My, (R), (Di)pii = fi(Di)puifi d = Y020 (Di)pss = Smt fi(Di)piifi and eny =
e11f1,ex,n = fiea,n, for 1 <i <my,, . Thus

m51

endex, x, = (e11f1) Zfz )i fi) (frea a)

mal

E drie11(Di)piiexn; x, = e11(D1)p11er; x, -

Since D; has 1 in the (1,A;)-entry, (D;1)pi; has 1 in its (1, A1)-entry. Therefore
e11(D1)p11er,,0, = €1x, and

n n
Z xwdyw Z Cwl elld6A1 )\1)wleA1 w Z 6w1(€1A1)¢1€>\1,w
w=1

w=1 w=1
n n
= § CwlCiNENy,w = E Cww = In
w=1 w=1

By Lemma 3.2(2), the Frobenius extension A C M, (R) is separable.

(2) Now, we prove that S, (¢, R) C M, (R) is split if and only if ¢ = diag(riIn,, roln,,

ey, ), where r; € Z(R) and r; # rj for 1 <i# j <t and Z;=1 n; =n.

If ¢ = diag(riln,,72ln,, - ,r¢ln,) with 7, € Z(R) and r; # r; for i # j, then
Sp; (i, R) = My, (R) and E; =id : Sy, (¢;, R) = My, (R) for 1 <4 <t. Clearly, (I,)E =
diag ((In,)Er, (Iny)E2, -+, (In,)Ey) = I,. Then S, (¢, R) C M, (R) is split by (1) and
Lemma 3.2(2).

Conversely, if S, (¢, R) C M,(R) is split, then it follows from (1) and Lemma 3.2(2)
that there exists a t x¢ block matrix z = (Z;;) with Z;; € M, xn, (R) such that (2)E = I,
and az = za for all a = diag {a1,a2,--- ,a;} € S, (¢, R) with a; a matrix in M,,(R) for
1 <4<t Since (2)FE = diag((Z11) E1, (Za2)Ea, - -+, (Zet) Ey) = I, we have (Z;;)E; = I,
for 1 < ¢ < t. Note that the condition az = za for all a € S, (¢, R) is equivalent to the
condition a;Z;; = Z;ja; for all a; € Sy, (ci, R),a; € Sp,(cj, R),1 < i,j < t. In particular,
Zia; = a;Z;; for all a; € Sy, (¢, R). By Lemma 3.10(3), ¢; = r;I,, for 1 < i < t. By
assumption on ¢, the eigenvalue of ¢; is not equal to the eigenvalue of ¢; for 1 <i # j <t.
Thus ¢ = diag(r11n,, 7210y, - s 7¢dn,) with r; € Z(R) and r; # r; for 1 <i# j <t.

(3) If ¢ = diag(riln,,reln,, - ,7¢ln,) and define ¢; = r;I,,, then Sy, (¢;, R) =
M,,(R). If R is semisimple, then S, (c;, R) = M,,(R) is semisimple for 1 < i < ¢.
Thus S, (¢, R), as a product of these Sy, (¢;, R), is semisimple. Conversely, if S, (¢, R) is
semisimple, then S, (¢;, R) is semisimple by Lemma 2.7(2) for 1 < ¢ < ¢. To prove R is
semisimple and ¢; = r;1,, for 1 < i <¢, it is enough to prove the following claim:
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Let ¢ be of the form in (t) (see Section 2). If S, (¢, R) is semisimple, then R is semisim-
ple and ¢ = rI,. It follows from Lemma 2.6(1) that f;S,(c, R)fi ~ Rlz]/(z*+®) is
semisimple for 1 <4 < mg. This yields that R is semisimple and Ay;) = 1 for 1 <7 < m.
In this case, A\ = 1, s = 1 and ¢ = rI,,. The claim follows. This also completes the proof
of (3). O

Remark that, for any unitary ring R and any subset C' of matrices in M, (Z(R)), the
extension S, (C, R) C M, (R) is separable. This follows from the facts: (1) If Ry C Ry C
R3 are extensions of rings such that R; C Rj3 is separable (semisimple), then Ry C R3
is separable (semisimple). (2) The extension R = {rl, | r € R} C M, (R) is separable.
Clearly, if the entries of ¢ € C lie in Z(R), then (rl,)c = ¢(rl,) and therefore S, (C, R)
contains R = {rl, | r € R}.

From Theorem 3.11, we get the corollary.

Corollary 3.12. Let k be an algebraically closed field.

(1) Every principal centralizer matrix extension over k is a separable Frobenius exten-
ston.

(2) If c € A := M, (k) x My, (k) x -+ x M,_(k), then S(c,A) C A is a separable
Frobenius extension.

Proof. (1) If k is an algebraically closed field, then every square matrix in M, (k) is a
Jordan-similar matrix. Thus Corollary 3.12(1) follows immediately from Theorem 3.11.
(2) Let ¢ = (¢;) € A with ¢; € M, (R) for 1 < i < mng. Then S(c, A) = S(c1, My, (k)) x
S(co, My, (k) x -+ x S(es, My, (k). By (1), S(ci, My, (k)) C M,, (k) is a Frobenius
extension for 1 < ¢ < s. Then S(c,A) C A is a Frobenius extension by Lemma 3.4 O

Finally, we note that, in a general context, the extensions S, (C, R) C M, (R) for C
subsets of M, (R) do not have to be Frobenius extensions.

Remark 3.13. (1) Let R be a local ring and n > 2 be an integer such that nR = 0. If
21 n, then the extension S, (%,, R) C M, (R) is not a Frobenius extension, where ¥,, is
the symmetric group of degree n.

In fact, if 7, denotes the n x m matrix with all entries equal to 1, then it follows
from nR = 0 that 42 = 0. Thus S, (X, R) = RI, + Ry, ~ R[X]/(X?). Since finitely
generated projective modules over a local ring must be free and of finite rank, we see
that finitely generated nonzero projective S, (3,, R)-modules are also free R-modules
of R-rank 2m for m > 1. Due to 2 { n, we deduce that M, (R) cannot be a projective
Sn(Xn, R)-module. Thus S, (3,, R) C M,(R) is not a Frobenius extension.

(2) If C contains two matrices in M, (R) (or if G has no G-free point), then S, (C, R) C
M, (R) (or Sp(G, R) C M, (R)) may not be a Frobenius extension.

Indeed, suppose R is a field of characteristic 3. Due to X3 = ((123), (13)), it follows for
C = {0(123)70(13)} C Mj3(R) that S3(C, R) = S5(X3, R) = RI3 + Rvy3. Then S3(C,R) C
M3(R) cannot be a Frobenius extension by (1). Note that X3 has no free point in {1, 2, 3}.
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4. Cellular algebras

In this section, we first recall some basic definition on cellular algebras and then prove
Theorem 1.1.

Throughout this note, R stands for a commutative ring with identity. Now, we state
the definition of cellular algebras introduced by Graham and Lehrer (see [6]).

Definition 4.1. [6] Let R be a commutative ring. A unitary R-algebra A is called a cellular
algebra with cell datum (P, M, C, 1) if the following conditions are satisfied:

(C1) P is a finite partially ordered, and for each p € P, there is associated a finite set
M (p) such that {C}; | p € P,i,j € M(p)} is an R-basis of the algebra A.

(C2) v : A — Ais an R-involution (that is an anti-automorphism of R-algebra A of
order 2) such that C}; is mapped to C; under .

(C3) Forac A, pe P, i,j € M(p),

aCl; = Z ra(u,1)Ch i 41!
u€M(p)

where the coeflicient r,(u,i) € R does not depend on j and where /' is a linear combi-
nation of basis elements C¥, with ¢ strictly smaller than p.

We remark that cellular algebras can also be described in terms of ring-theoretic lan-
guages (see [13] for details). Cellular algebras cover many important examples of algebras
such as Hecke algebras, Brauer algebras and Temperley-Lieb algebras, and reduce many
problems in representation theory to the ones in linear algebra (see [6]).

For a cellular algebra A and p € P, we denote by C<P the R-module spanned by all Ciqj
with ¢ < pand i,j € M(q). By linearization of P, we may assume that P = {1,2,--- ,n}
with the natural ordering. Following [13], the chain CS! ¢ C<2 C ... C C=" = A is
called a cell chain of A.

Note that the cellularity of algebras is not preserved by Morita equivalences. This
means that we cannot get cellularity of an algebra by passing to the one of its basic
algebra.

Recall that an ideal I of a finite-dimensional algebra A over a field is called a heredity
ideal if I = AeA for e = e € A, erad(A)e = 0 and 4AeA is projective. Following [2],
a finite-dimensional algebra A is said to be quasi-hereditary if there is a chain of ideals:
0=IychL C - C I, = Asuch that I;/I;_1 is a heredity ideal in A/I;_y. Such a
chain is then called a heredity chain of the quasi-hereditary algebra A. Quasi-hereditary
algebra appears widely in representation theory of Lie algebras and algebraic groups
(see [2]).

First, we consider the cellularity of principal centralizer matrix algebras of special
form where all blocks have the same eigenvalues.

Let ¢ = diag(JP", J5?,- -+, J¥) € M, (R) be a Jordan-block matrix with Jordan blocks
Ji =[r,1,0,---,0] € My, (R) of different sizes A;, r € Z(R), 1 <i < s. Here, in means
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that the block J; appears b; times. We assume A\; > Ay > --- > Ag and keep all notations
introduced in Section 2.

For each p € [A1], let I(p) be the biggest I(p) € [s] such that X,y > p. We define
M(p) := [my)]. Recall that g(i) is the smallest g(i) € [s] such that i < mg for
1 <i<mgand h(i) :=i—mg—1 € [by)]-

The following lemma is useful in later proofs.

Lemma 4.2. (1) For 1 < p,q < A1, if ¢ < p, then l(q) > l(p) and M(q)
(2) If1<u<sand 1 <p< A, thenp < Ay if and only if l(p) >
(M) = u.
(3) If 1 < i < my, then i € M(p) if and only if g(i) < l(p) if and only if gy > p
(4) glmy) =u for 1 <u<s.

2 M(p).
w. In particular,

Proof. (1) By definition, we obtain p < Xy As ¢ < p, we have ¢ < N;,y. The choice
of I(q) implies I(q) > I(p). Since my < ma < --- < mg, we get my(q) > my(p). Therefore
M(q) = [muq)] 2 [mug)] = M(p).

(2) If p < Ay, then I(p) > u by the choice of I(p). Conversely, if [(p) > u, then it follows
from Ay > Ay > -+ > Ay that Ny < Ay. By the definition of I(p), we have p < Xy,
and therefore p < \,. Specially, if p = A,, then I[(\,) > u. On the other hand, by the
definition of I(\,), we deduce A(,) > Ay. It then follows from A; > Ay > --- > A, that
I(Ay) < u. Hence I(A\,) = u.

(3) By definition, g(i) is the smallest g(i) € [s] such that i < mge. If i < my,),
that is i € M(p), then g(i) < I(p). Conversely, if g(i) < I(p), then i = mgy;y—1 + h(i) <
Mg(i)—1 + bg(iy = Mgy < My(py and i € M(p). Hence i € M(p) if and only if g(i) < I(p).
By (2), p < Ay if and only if I(p) > g(i). Thus (3) follows.

(4) By definition, m, < my(p,). Since m; < mg < --- < m,, we conclude u < g(my,).
On the other hand, since g(m,) be the smallest g(m,) € [s] such that m, < my(n,), it
follows from m,, < m,, that g(m,) < u. Thus g(m,) =u. O

For i,j € M(p), we define

P
po._
Ol = D nyonio Ao +p-utLmyioney—ut1 € Ma(R),
u=1
. p _ p . . .
that is, C7; = Oy €p—ut1 gy —utl)Pij 15 an ms X mg block matrix with

Y vt €put 1, —utl i the (4, j)-block of size Ag(iy X Ag(j), and 0 in the (k,1)-block of
size Mgk X Agy if 1 < k1 < my and (k,l) # (i,7) (see Section 2 for the definition of
Pij)-

Lemma 4.3. © := {C}; | p € [\1],4,j € M(p)} is an R-basis of S(c, R).

Proof. By Lemma 2.6(3), A := {F}; | 1 < i,j < mg, 1 < p < min{Ag), \g(jy}} is an
R-basis of Sy, (c, R). We shall show © = A.
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Note that for 1 <i,j <msand 1 <p < Ay, if 4,5 € M(p) and p < min{Agy), Ag(j) }
then C}; = F};. To prove © = A, it is enough to show that, for 1 < 4,j < m, and
1 <p < A\, we have 4,5 € M(p) if and only if p < min{Ay¢y, Ag¢;)}. But this is clear
from Lemma 4.2(3). Hence © = A and {C}; | p € P,i,j € M(p)} is an R-basis of
Sn(c,R). O

For p,q € [M], 4,5 € M(p) and u,v € M(q), by Lemmas 2.5 and 4.3, we have the
formula

(x) CL.CP =

uv ~'ij

5, CoTTTM i p g = Ay > 1,
0 ifp+q—)\g(y)<1.

By using the R-basis of S, (¢, R), one may define an R-linear map

v:Su(e, R) — Sn(c, R), CF; = CF

Jjv

p €Ml i, i€ M(p).

Clearly, ¢ is an isomorphism of R-modules and (2 = id. Given p,q € [\i], 4,5 € M(p),
and u,v € M(q), if p+q — Ag(vy > 1, then it follows from (x) that

(C2,CP ) = (8, CFTM0), = 6, 0L a0 — gP e — (CP)u(CE, ).

If p+q— Ay < 1, then (CZ,CY)e = (0) = 0 and there always holds C%,CZ, = 0

uv ~ij ji~vu

by (x). This shows (CZ,C)e = 0 = C},Cf,. In summary, ¢ is an anti-automorphism of

the R-algebra S, (c, R). Thus ¢ is an involution of S, (c, R).
We remark that the involution ¢ is not the transpose of matrices in general.

Lemma 4.4. Let ¢ = diag(J>, J2, -+, J¥) € M,(R) be a Jordan-block matriz with
Jordan block J; = [r,1,0,---,0] € My,(R) for1 <i<s andr € Z(R), where J; appears
b; times and Ay > Ay > -+ > X;. Then Syp(c, R) is a cellular R-algebra with respect to
the involution .

Proof. (1) Let P:={1,2,---,A;} with the natural ordering. By Lemma 4.3, {C’ij |pe
P,i,j € M(p)} with M(p) = [my()] is an R-basis of Sy (c, R).

(2) By definition, (C};)¢ = (C};) for p € P and i,5 € M(p).

(3) To verify Definition 4.1(C3), it is enough to check (C3) for a basis element a. Let
p,q € [M],i,j € M(p), and u,v € M(q). Then CZ,C?: = 5vic§jq”9<’"> if p+q—Ag(o) > 1
and 0 otherwise by (x). This means that we have to verify (C3) for the case p+q—Ag() >
L. In this case, it follows from g < Ay(,) that the product can be rewritten as

C9,CP = 6,10,

uv~ij

P Y P+a—Ag(v)
y(v)Cuj + Oui q,kg(ru)cuj )

where ¢/, stands for the anti-Kronecker symbol, that is, 67, = 0 if s = ¢ and 1 if s # ¢.
Note that if ¢ # Ag(,) then p+ ¢ — Ag(y) < p and that the coefficients d4(y)q(i)0vi € R do
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not depend on j. Hence C’ng’fj can be expressed in the desired form. Hence, according

to Definition 4.1, S, (¢, R) is a cellular R-algebra with respect to the involution ¢. O
In general, we have the result.

Theorem 4.5. If R is an integral domain and c is an n x n Jordan-similar matriz over
R, then S, (c, R) is a cellular R-algebra.

Proof. Since ¢ is a Jordan-similar matrix in M, (R), there is a Jordan-block matrix d
such that ¢ is similar to d. Thanks to Lemma 2.1(1), we have S, (¢, R) ~ S,,(d, R) by an
inner automorphism. Let

d= diag(inl,Jff, T 7‘]{);:1 ) JS??‘JS? T 7J§§22 oo vaflﬂ szw T 7thst:t) € M, (R)
with Ji; = [r;,1,0,...,0] € My, (R) appearing b;; times for 1 < j < s;, 1 <4 < t,
Ail > Xig > - > A, 7 € Z(R), and r; # rj for i # j.

For 1 <i < t, we define n; := Z;;l biphip, di = diag(Ji, -+, Jiny s Jisys o 5 Jisy)
€ M,,(R), and A; := S, (d;, R). Observe that d; is a Jordan-block matrix with the same
eigenvalue r;. It follows from Lemma 2.7(2) that S, (d, R) is isomorphic to Aj X Ag X - -+ X
A as algebras. Further, by Lemma 4.4, each A; is a cellular R-algebra with respect to
an involution ¢;. Now, we define an involution ¢ := @®!_,¢; : S, (d, R) — S, (d, R), (a;) —
((a;)e;) for a; € A;,1 <@ < t. Then S,(d, R) is a cellular R-algebra with respect to the
involution «¢.

It follows from S, (¢, R) ~ S, (d, R) that S, (c, R) is a cellular algebra induced by the
cellular structure of S, (d, R). O

Consequently, we have the next corollary.

Corollary 4.6. Let R be an algebraically closed field.

(1) Every principal centralizer matriz algebra is a cellular R-algebra.

(2) Ifce A:=M,,(R) X Mp,(R) X -+ x M, (R) withn; >1 for all 1 <i < s, then
S(c,A) is a cellular algebra.

Proof. (1) Every square matrix over an algebraically closed field is a Jordan-similar
matrix. Thus every centralizer matrix algebra is a cellular R-algebra by Theorem 4.5.
(2) Let ¢ = (¢1,--+,¢5) € A with ¢; € M,,,(R). Then S(c,A) ~ S(c1, My, (R)) x
S(co, My, (R)) x -+ x S(es, My, (R)). Since each S(¢;, My, (R)) is a cellular algebra by
(1), S(e, A) has a cellular algebra structure induced by S(c;, M, (R)) for 1 <i<s. O

Proof of Corollary 1.3. (1) is clear from Corollary 3.12(1).
(2) By a well-known theorem of Maschke, which says that kG is semisimple if and
only if the ctaracteristic of k does not divide |G|, we have kG ~ M, (k) X M,, (k) x --- X
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M, (k), where ni,na, ..., ns are the dimensions of all irreducible representations of kG.
Now, (2) follows transparently from Corollary 4.6(2). O

With the help of general theory of cellular algebras, we can parameterize simple
modules and describe quasi-heredity of principal centralizer matrix algebras.
We recall the following result on cellular algebras, which is taken from [6,13].

Lemma 4.7. Let A be a cellular algebra over a field R with an involution ¢ and cell chain
0=CycCyC---CC;CCy_qy CCy=A. Then the following hold.

(1) There is a natural bijective between isomorphism classes of simple A-modules and
indices p € {1,2,--- , A} such that Cg 7 Cp_1.

(2) The given cell chain of A is a heredity chain (making A into a quasi-hereditary
algebra) if and only if Cg ¢ Cp_1 for all p if and only if X equals the number of isomor-
phism classes of simple modules.

The following corollary describes the number of simple modules and quasi-heredity of
principal centralizer matrix algebras.

Corollary 4.8. Let R be a field and ¢ € M,(R) be a Jordan-similar matriz of the block
type {(A11, A2, 5 Arsy )y (Aes Avzy oo 7)\tst)}- Then

(1) S,(c, R) has Y'_, s; non-isomorphic simple modules.

(2) Sn(c, R) is a quasi-hereditary algebra if and only if Aij = s; —j+1 for1 <i <
t,1<j<s;if and only if \j1 = s; for 1 <i <t.

Proof. First, we prove Corollary 4.8 for the case that ¢ is a Jordan-block matrix with the
same eigenvalues, that is, ¢ = 1 and ¢ has a block type of the form {(A1, A2, -+, Ag)} with
A1 > Ay > --- > A,. By Lemma 2.1(1), we can write ¢ = diag(J%*, J&2, -, J%) € M,(R)
as in (). By Lemma 4.4, S, (¢, R) is a cellular R-algebra with respect to the involution
t. We then have a cell chain 0 = Cy C C; C --- C Cp C --- C C),, where ()}, stands for
the R-module spanned by all basis elements ij with ¢ < p and i,5 € M(q).

(1) By Lemma 4.7 (1), to prove that S,(c, R) has exactly s non-isomorphic simple
modules, it is sufficient to prove that there are exactly s indices p € [A1] such that
Cg ¢ Cp—1. In the following, we show that Cg ¢ Cp1 if and only if p = Ny(;).

We first prove the sufficiency. Suppose p = X;;,y. By Lemma 4.2(4), g(my,)) = I(p)

and Ay = Np) = p. Then it follows from (x) that

mi(p))

PHP—Ag(myy)
9(mip)) _ p 2
le(p)»mup) =C € Cp \Cp-1,

Mi(p) MU (p)

Oty gy Oy ey =
that is, C’g ¢ Cp1.

Now, we show the necessity. Suppose Cg ¢ Cp—1. According to (*), there exist u, v, w €
M (p) such that C2,CP = Cﬁzp_%(“) ¢ Cp1. Thus p+p— Ay = pand p = Ay(y). By

uv vw
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Lemma 4.2(2), I(p) = l(Ag(v)) = 9(v) and p = Ag) = Ay(p)- Hence, for p € [A1], we have
Cg ¢ Cp—1 if and only if p = Ny().

By Lemma 4.2(2), Ay = Nz, for all 1 <u <s. Thus {p € [M] | p = N} = { |
1 <u<s} Since A\ > Ay > -+ > A, the set {A, | 1 < u < s} has exactly s elements.
Thus Sy, (¢, R) has exactly s non-isomorphic simple .S, (¢, R)-modules.

(2) By Lemma 4.7(2), that S, (¢, R) is a quasi-hereditary algebra is equivalent to the
condition A\ = s. Since Ay > Ay > -+ > A,;, we know that \; = s if and only if
Ni=s—i+1forl<i<s.

Next, we deal with the general case of a Jordan-similar matrix ¢ € M,(R). By
Lemma 2.1(1), we may assume ¢ = diag(cy, 2, -+ ,¢) as in (11). Then S, (¢, R) is isomor-
phic to Sy, (c1, R) X Sp,(c2, R) x + -+ x S, (¢4, R)) as algebras by Lemma 2.7(2). Since we
have shown that Sy, (¢;, R) has s; non-isomorphic simple Sy, (¢;, R)-modules for 1 < i < ¢,
the number of non-isomorphic simple S, (¢, R)-modules is Z§=1 s;. Clearly, S, (¢, R) is a
quasi-hereditary algebra if and only if each S,,(c;, R) is a quasi-hereditary algebra for
1 <4 <t, while Sp,(¢c;, R) is a quasi-hereditary algebra if and only if A\;; = s, —j + 1
for 1 < j < s; if and only if A\;; = s;. This implies that S, (¢, R) is a quasi-hereditary
algebra if and only if Aj; =s; —j+1forall 1 <i<t¢,1<j<s;if and only if Aj1 =55
for 1 <1 < t. Thus Corollary 4.8 follows. 0O

At this moment, let us display an example to illustrate the results in the paper.

Example 4.9. Let R be a field and ¢ = diag(Jy,...,J2,...,Js) € M,(R) be a Jordan-
block matrix with Jordan blocks J; = [r,1,0,---,0] € M),(R), 1 <4 < s, and A\ =
$;A =8 —1,---As_1 = 2,As = 1. In this case, S,(c, R) is a basic, quasi-hereditary
algebra by Corollary 4.8(2) and Lemma 2.6. Further, dimg (S, (c, R)) = #s(s+1)(2s+1)
and n = 1s(s+1).

We will work out a presentation of A := S, (¢, R) in terms of quiver with relations.
By Lemma 2.6, A has an R-basis F':= {F}; [ 1 <i,j < s,1 <p < min{)\;, \;}} with a
complete set {F;y' | 1 < i < s} of orthogonal primitive idempotent elements, and rad(A)
has an R-basis F} := F\{F | 1 <i < s}. Moreover, we prove that rad(A)/rad*(A) has
an R-basis @ := {Fl)‘_“,Ff;_l |1 <i<s}.

(1) F1\Q C rad®(A). Suppose Ff; € F1\Q1. Then p < min{\;, \;}. We consider the
three cases.

(i) ¢ < j. In this case, \; > A;. If j = ¢ + 1, then it follows from Ff‘zfl € Q1 that
P < Ais1. By Lemma 2.5, we have FY, = FP, | = FPRNFN T As FPEL PN € B,
we get F¥, € rad®(A). Similarly, if j > i + 1, then it follows from Fj;t} € Fy and
FP.,; € Fy that F, = F)i P o € rad?(A).

(ii) ¢ > j. In this case, \; < A;. If j = ¢ — 1, then it follows from F;\;_l € @1 that
p < Ai. By Lemma 2.5, FF, | = FPF FN V71 € rad®(A). If j < i — 1, then F)'[\ € Fy
and F}, = FZ-]?FIF{YL} € rad?(A).
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(iii) ¢ = j. In this case, we have p < \; from FZAZ € Q1. Since \; = A\j41 + 1, this
implies p < X\j41. Then F}, = Fi’?i_HFi)‘_H’li by Lemma 2.5. It follows from F}’;, , € Fy and
F;}ﬁﬂ € Fy that F; € rad’(A).

(2) No element in @Q; belongs to rad®(A). In fact, for Fi,, Ff. € Fi, the product
FJ,Fj; is either 0 or again an element of Fy. This implies that F} € rad®(A) if and
only if Ffj = F,F}; for some F{,, Ff; € F;. Suppose F,i‘ka = F4,Fl € Q1 Nrad®(A)
for some ng,,ng, € Fi. Then v = 4,u = k—1,7 = k,q+ p — A, = M. Note that
¢ < min{A\,, A} < Ay and p < min{A, A} < A Thus 0 < Ay —p =g — A, < 0.
Therefore A\, = p, ¢ = Ay, A < Apand Ay, < Ag_q1. As A\ +1 = Ag_1, we have A\, = A\p_1
or Ay = Ag. This means v =k — 1 or v = k. If v = k — 1, then F¥, = Fo*il | ¢ Fy. 1f
v =k, then i = v =k and Fi’; = F,;\,;“ ¢ Fy. The both cases contradict to the choices of
Fj, and Ff;, respectively. Thus F,i‘fl,k ¢ rad?(A). Similarly, FS;_I ¢ rad?(A). Therefore
(2) holds and @, is an R-basis of rad(A)/rad?(A).

Now, we define f; := Fﬁl for1<i<s, a; = F;\zfl and 3; := F:_‘Jll forl1 <i<s—1.
Then fia; = a;fit1 and fip18; = Bifi for 1 <i <s,Bs_105-1 =0 and «;3; = Bi—1vi—1

for 1 < i < s. Thus A is isomorphic to the algebra given by the quiver with relations:

B1 B2 Bs—2 Bs—1
o=~ e=—"— e - e =_—S e, ﬂs_las_lzo, aiﬂi:ﬂi—loﬁ—l,1<l<5-
1 a1 2 Q2 Qg2 as_1 S

This is actually the Auslander algebra of R[X]/(X?®) which has applications in describing
orbits of parabolic subgroups acting on their unipotent radicals (see [7]).
To end this section, we propose open questions related to the results in this paper.

Question 4.10. Let R be an arbitrary unitary ring, and let o, 7 be elements of the sym-
metric group X,.

(1) Suppose that R is commutative. Is S, (o, R) always a cellular R-algebra?

(2) Is Sy (o, R) € M, (R) always a Frobenius extension?

(3) When are Sy, (o, R) and S, (7, R) derived equivalent?

(4) The canonical embedding R C M, (R) is a Frobenius extension. How can one
parameterize all intermediate rings S such that S C M, (R) are Frobenius extensions?

Note that Question (2) still makes sense, though we have Remark 3.13. Also, the
answer to (3) seems to depend only on numerical properties of the cycle types of o
and 7.
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